Investigating the Music in our Heads – a One Day Symposium at Goldsmiths

InMI as an unconditioned response: exploring the possibilities

Ioanna Filippidi & Renee Timmers University of Sheffield ifilippidi1@sheffield.ac.uk

Contributing Factors for InMI

- Williamson et al (2011) categories
 - Service (recent, repeated)
 - Memory triggers (association, recollection, anticipation)
 - Affective states (mood, stress, surprise)
 - Low attention states (dreams, mind wondering)
- Schizotypy behaviour: systematic failure in mental control (Beaman and Williams, 2010, 2013)
- Neuroticism Personality traits (Floridou, 2012)

Increased earworms in musical individuals (Williamson, 2011; Liikkanen, 2012, Bailes, 2008)

Byron and Fowles, 2013, familiarity predicts InMI

Definitions

		Definition	Reasoning/ Main factors	Other
L	iikkanen (2009; 2011)	InMI	music activities/playing	women more prone
W	Villiamson et al (2011)	InMI / earworms	recent exposure and memory triggers	also low attention /affective states
F	loridou et al (2012)	InMI / earworms	Personality/ neuroticism	
В	ailes (2007)	musical imagery	recent exposure	To musicians
В	yron & Fowles (2013)	InMI	repetition and recency	
W	Vammes & Baruss (2009)	Spontaneous musical imagery	personality	negative to musically engaged individuals
	eaman & Williams (2010, 013)	Earworms/ InMI	musical as being important Personality	negative-repeated- annoying Schizotypal personality
H	Ialpern & Bartlett (2011)	Earworms	triggers	Mostly pleasant experience

Definition of InMI

- Searworms loop: 'tune comes unbidden and repeated'
- Pop-ups: 'music playing in the background'

All InMI is taken into consideration.

Role of training in daily life

Music listening: Systematic music listening, with specific uses of music (Krause & North, 2014)

Music association: Madeleine effect

Training effect

To what extent is InMI a product of training through music listening habits?

Hypothesis

InMI is the Unconditioned Response of the conditioning through music experience

Predictions:

- InMI experience will depend on music listening behaviour/ habits of each individual.
- Musically engaged individuals → mainly InMI of their taste
- Non musically engaged individuals → mainly stuck in mind tunes (out of recent/repeated exposure)

Hypothesis

Not musically engaged individuals

Musically engaged individuals

Annoying type of InMI (recent exposure/ annoying, repeated)

Pleasant type of InMI (of taste/ playing on the background)

Previous study

Data from 2013 study (N=401)

Online questionnaire (N=401)

- •InMI when want to listen to music, 60.75%
- •InMI affected by music listening, 73.89%, N=360

Correlations:

- •Music in combination with activities \sim InMI while doing these activities ρ = .23, N=344, p<. 001
- •Pleasantness of the InMI \sim musical engagement, $\rho = .23$, N=401, p<.001
- •InMI only upon trigger \sim musical engagement, ρ = -.12, N=401, p<.05

Diary (*N*=11)

- •InMI relation with activities
- •InMI act as a substitute for music
 - Matching moods

(Filippidi, 2013)

Research questions

- Solutioning through everyday music listening.
 - Uses of music and InMI

Investigate the link between certain activities/ situations and music/ InMI

Some Create the environment for such an association

Experimental design 1

3x Training: 3 activities are coupled with 3 'sonic environments'

Material: Music , Podcast , Silence, all 1'33"

Activities: Puzzle, Socks, Yarn

1x Test: 3 activities are done in silence

Test: Are music or podcast imagined in respective activity?

Methods

- **№** N=30
- Musical Background information was obtained
- 2 consecutive days: 3 training sessions and 1 test session
- After each task, brief questionnaire and break.
- The aim of the study was masked as "music and activities", and there were extra questions on the questionnaire, so to prevent bias, as much as possible.
- Same pair for each participant, different order of presentation.
- Different pairings across participants, randomized order of presentation.

Experimental set up

Participant 1	Day 1	Music+ Yarn	Silence+ Socks	Podcast+ Puzzle
		Silence+ Socks	Music+ Yarn	Podcast+ Puzzle
	Day 2	Podcast+ Puzzle	Silence+ Socks	Music+ Yarn
		Yarn	Puzzle	Socks
Participant 2	Day 1	Podcast+ Socks	Silence+ Yarn	Music+ Puzzle
		Silence+ Yarn	Podcast+ Socks	Music+ Puzzle
	Day 2	Music+ Puzzle	Podcast+ Socks	Silence+ Yarn
		Socks	Puzzle	Yarn

Expectations

- InMI related to music from session <u>more</u> in the activity previously paired with music, than in the other activities.
- No internal representation of Podcast (InPod).
- Possible correlation with music listening/ InMI of individual
 - Musically engaged individuals will experience more InMI

Results: Attention to auditory environment, InMI, or InPod

Music test condition: More InMI and acoustic environment than InPod

$$Q=10.5, df=2, p=.005, N=30$$

Silent test condition: More acoustic environment and InMI than InPod

$$Q$$
= 8.8, df = 2, p =.012, N =30

Filippidi & Timmers Goldsmiths 2015

Music Test	No	Yes
InMI related to session	20	10
InPod related to session	30	0
Attention to auditory env	22	8

Silent Test	No	Yes
InMI related to session	24	6
InPod related to session	29	1
Attention to auditory env	19	11

Results: Attention to auditory environment, InMI, or InPod

Podcast test condition: No difference between types of attention/imagery

Q=2.2, df=2, p=.336, N=30

Music Test	No	Yes
InMI related to session	25	5
InPod related to session	27	3
Attention to auditory env	23	7

Results: Imagery in music, podcast and silence condition

InMI in music, podcast and silence condition

$$Q=4.2$$
, $df=2$, $p=.122$, $N=30$

InMI	No	Yes
Music test	20	10
Podcast test	25	5
Silence test	24	6

Attention to acoustic environment in music, podcast and silence condition

$$Q=2.4$$
, $df=2$, $p=.307$, $N=30$

Attention to acoustic env.	No	Yes
Music test	22	8
Podcast test	23	7
Silence test	19	11

Filippidi & Timmers Goldsmiths 2015

Results: Imagery in music, podcast and silence condition

InPod in music, podcast and silence condition

$$Q=3.5$$
, $df=2$, $p=.174$, $N=30$

InPod	No	Yes
Music test	30	0
Podcast test	27	3
Silence test	29	1

Discussion

- Small sample for a subtle effect
- Instrumental music- no lyrics
- Training sessions not enough to create an effect
 - Pilot was for 3 days → more repetition.
 - So Call back participants for another session (one day).
 - Case study with fewer participants and more repetitions (in more days)
 - Check back association (Byron and Fowles, 2013) with email after some days.

Implications on testing hypothesis.

Further exploration

Mood & listening

9 InMI & mood

Thank you.

ifilippidi1@sheffield.ac.uk

Selected bibliography

- Beaman, C, & Williams, T (2010). Earworms (stuck song syndrome): towards a natural history of intrusive thoughts. British Journal of Psychology, 101(4), 637-653.
- Krause, A. E., & North, A. C. (2014). Music listening in everyday life: Devices, selection methods, and digital technology. Psychology of Music, 0305735614559065.
- Liikkanen, L. (2008) Music in Everymind: Commonality of Involuntary Musical Imagery (pp408) Proceedings of the 10th International Conference on Music Perception and Cognition (ICMPC 10). Sapporo, Japan.
- Merrett, D. L., Peretz, I., & Wilson, S. J. (2013). Moderating variables of music training-induced neuroplasticity: a review and discussion. *Frontiers in psychology*, 4.
- Skinner, B. F. (1938). The behaviour of organisms: An experimental analysis
- Williamson, V, Jilka, R, Fry, J, Finkel, S. Mullensiefen, D & Stewart, L. (2012). How do "earworms" start? Classifying the everyday circumstances of Involuntary Musical Imagery. Psychology of Music, 40, 3, 259-284.
- Vuoskoski, J. K., & Eerola, T. (2013). Extramusical information contributes to emotions induced by music. Psychology of Music, 43(2), 262–274. http://doi.org/10.1177/0305735613502373
- Zatorre, R, & Halpern, A. (2005). Mental concerts: musical imagery and auditory cortex. Neuron, 47, 1, 9-12.